题目内容
已知数列{an}的首项a1=5且Sn-1=an(n≥2,n∈N*)
(1)求a1,a3,a4的值,并猜想an(n≥2,n∈N*)的表达式;
(2)用数学归纳法证明你的猜想.
(1)求a1,a3,a4的值,并猜想an(n≥2,n∈N*)的表达式;
(2)用数学归纳法证明你的猜想.
分析:(1)由题意可得 an+1=
,又a1=2,可求得a2,再由a2的值求 a3,再由a3 的值求出a4的值.
(2)猜想 an=
,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.
| 2an |
| an+1 |
(2)猜想 an=
| 2n |
| 2n-1 |
解答:解:(1)由题意:Sn-1=an(n≥2,n∈N*),
得 a2=S1=a1=5;a3=S2=a1+a2=10;a4=S3=a1+a2+a3=20;
猜想:an=5×2n-2(n≥2,n∈N);
证明:(2)①当n=2时,由(1)知,命题成立.
②假设当n=k时命题成立,即 ak=5×2k-2,
则当n=k+1时,a k+1=Sk=a1+a2+…+ak=5+
=5-5•2k-1=5•2k-1,
故命题也成立.
综上,对一切n≥2,n∈N都有an=5×2n-2成立.
得 a2=S1=a1=5;a3=S2=a1+a2=10;a4=S3=a1+a2+a3=20;
猜想:an=5×2n-2(n≥2,n∈N);
证明:(2)①当n=2时,由(1)知,命题成立.
②假设当n=k时命题成立,即 ak=5×2k-2,
则当n=k+1时,a k+1=Sk=a1+a2+…+ak=5+
| 5(1-2 k-1) |
| 1-2 |
故命题也成立.
综上,对一切n≥2,n∈N都有an=5×2n-2成立.
点评:本题考查数列的递推公式,用数学归纳法证明等式成立.证明当n=k+1时命题也成立,是解题的难点.
练习册系列答案
相关题目