题目内容
若为y=sin(2x+α)+cos(2x+α)奇函数,则最小正数α的值为______.
解因为y=sin(2x+α)+cos(2x+α)为奇函数,
且y=sin(2x+α)+cos(2x+α)=
sin(2x+α+
)是奇函数,
则x=0时y=0 所以
sin(α+
)=0且α是正数,
所以α+
=πα=
,
故答案为α=
.
且y=sin(2x+α)+cos(2x+α)=
| 2 |
| π |
| 4 |
则x=0时y=0 所以
| 2 |
| π |
| 4 |
所以α+
| π |
| 4 |
| 3π |
| 4 |
故答案为α=
| 3π |
| 4 |
练习册系列答案
相关题目