题目内容
设平面内的向量| OA |
| OB |
| OM |
| PA |
| PB |
(Ⅰ)求
| OP |
(Ⅱ)求∠APB的余弦值;
(Ⅲ)设t∈R,求|
| OA |
| OP |
分析:(I)由点P在直线OM上,可知
与
共线,利用向量共线的充要条件得到有
=(x,x)代入
•
=16,利用向量的数量积公式列出关于x的方程,求出
的坐标;
(II)由(I)可求得
=(-6,-8),
=(0,-2),利用向量模的坐标公式求出它们的模,代入
•
=16.
利用数量积公式求出∠APB的余弦值;
(III)利用向量模的坐标公式将|
+t
|表示成关于t的二次函数,然后求出其最小值.
| OP |
| OM |
| OP |
| PA |
| PB |
| OP |
(II)由(I)可求得
| PA |
| PB |
| PA |
| PB |
利用数量积公式求出∠APB的余弦值;
(III)利用向量模的坐标公式将|
| OA |
| OP |
解答:解:(Ⅰ)设
=(x,y).
由点P在直线OM上,可知
与
共线.
而
=(2,2),
所以2x-2y=0,即x=y,有
=(x,x).
由
=
-
=(-1-x,-3-x),
=
-
=(5-x,3-x),
所以
•
=(-1-x)(5-x)+(-3-x)(3-x),
即
•
=2x2-4x-14.
又
•
=16,所以2x2-4x-14=16.
可得x=5或-3.
所以
=(5,5)或(-3,-3).…(4分)
当
=(5,5)时,
=(-6,-8),
=(0,-2)满足
•
=16,
当
=(3,3)时,
=(-4,-6),
=(2,0)不满足
•
=16,
所以
=(5,5)
(Ⅱ)由
=(-6,-8),
=(0,-2),
可得|
|=10,|
|=2.
又
•
=16.
所以cos∠APB=
=
=
.…(8分)
(Ⅲ)
+t
=(-1+5t,-3+5t),|
+t
|=
.
当t=
时,|
+t
|的最小值是
. …(12分)
| OP |
由点P在直线OM上,可知
| OP |
| OM |
而
| OM |
所以2x-2y=0,即x=y,有
| OP |
由
| PA |
| OA |
| OP |
| PB |
| OB |
| OP |
所以
| PA |
| PB |
即
| PA |
| PB |
又
| PA |
| PB |
可得x=5或-3.
所以
| OP |
当
| OP |
| PA |
| PB |
| PA |
| PB |
当
| OP |
| PA |
| PB |
| PA |
| PB |
所以
| OP |
(Ⅱ)由
| PA |
| PB |
可得|
| PA |
| PB |
又
| PA |
| PB |
所以cos∠APB=
| ||||
|
|
| 16 |
| 10×2 |
| 4 |
| 5 |
(Ⅲ)
| OA |
| OP |
| OA |
| OP |
| 50t2-40t+10 |
当t=
| 2 |
| 5 |
| OA |
| OP |
| 2 |
点评:本题考查平面向量共线定理,平面向量数量积的坐标表示,二次函数的单调性及最值的求解,向量夹角的坐标表示.熟练掌握向量的基础知识并能灵活运用是解决问题的关键.
练习册系列答案
相关题目