题目内容
已知数列{an}中,a1=1,当n≥2时,其前n项和sn满足sn2=an(sn-| 1 |
| 2 |
(1)证明:数列{
| 1 |
| sn |
(2)设bn=
| sn |
| 2n+1 |
分析:(1)由题意sn2=an(sn-
)结合an=sn-sn-1(n≥2)得:sn2=(sn-sn-1)(sn-
)(n≥2),由此能够推出数列{
}为公差为2的等差数列,再由
=
+(n-1)2=1+(n-1)2=2n-1,知sn=
.
(2)由bn=
=
(
-
),知Tn=
(1-
)=
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| sn |
| 1 |
| sn |
| 1 |
| s1 |
| 1 |
| 2n-1 |
(2)由bn=
| sn |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
解答:解:(1)证明:由题意sn2=an(sn-
)结合an=sn-sn-1(n≥2)得:
sn2=(sn-sn-1)(sn-
)(n≥2),
化简整理得
-
=2(n≥2),
知数列{
}为公差为2的等差数列,
且
=
+(n-1)2=1+(n-1)2=2n-1,sn=
(2)解:bn=
=
(
-
),所以Tn=
(1-
)=
| 1 |
| 2 |
sn2=(sn-sn-1)(sn-
| 1 |
| 2 |
化简整理得
| 1 |
| sn |
| 1 |
| sn-1 |
知数列{
| 1 |
| sn |
且
| 1 |
| sn |
| 1 |
| s1 |
| 1 |
| 2n-1 |
(2)解:bn=
| sn |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
点评:本题考查数列的性质及其应用,解题时要注意合理地进行等价转化.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|