题目内容
已知定义在(0,+∞)上的两个函数
处取得极值.
(1)求a的值及函数g(x)的单调区间;
(2)求证:当
成立.
(3)把g(x)对应的曲线向上平移6个单位后得曲线C1,求C1与f(x)对应曲线C2的交点个数,并说明理由.
解:(1)∵f′(x)=2x-
,∴f'(1)=2-a=0,∴a=2.…(2分)
∴
.由
,得x>1;
由
,得0<x<1.
∴g(x)的单调递减区间是(0,1),单调递增区间是(1,+∞).…(4分)
(2)∵1<x<e2,
∴0<lnx<2,
∴2-lnx>0.
欲证
,只需证明2x-xlnx<2+lnx,
即只需证
.
记
,
则
.
当x>1时,F'(x)>0,
∴F(x)在(1,+∞)上是增函数.
∴F(x)>F(1)=0,
∴F(x)>0,即
.
∴
.故结论成立. …(8分)
(3)由题意知
.
问题转化为
在(0,+∞)上解的个数.…(10分)
=
.
由G'(x)>0,得x>1;由G'(x)<0,得0<x<1.
∴G(x)在区间(1,+∞)上单调递增,在区间(0,1)上单调递减.
又G(1)=-4<0,所以
在(0,+∞)上有2个解.
即C1与f(x)对应曲线C2的交点个数是2.…(14分)
分析:(1)先根据f'(1)=0求出a的值,然后求出g′(x),最后解g′(x)>0与g′(x)<0,即可求出函数g(x)的单调区间;
(2)先判定2-lnx的符号,欲证
,只需证明2x-xlnx<2+lnx,即只需证
,记
,然后利用导数研究函数的单调性求出函数F(x)的最小值即可证得结论;
(3)由题意知
,问题转化为
在(0,+∞)上解的个数,然后利用导数研究函数的单调性,从而可判定解的个数.
点评:本题主要考查了利用导数研究函数的极值,以及函数的单调性和图象交点问题,同时考查了转化的思想,属于中档题.
∴
由
∴g(x)的单调递减区间是(0,1),单调递增区间是(1,+∞).…(4分)
(2)∵1<x<e2,
∴0<lnx<2,
∴2-lnx>0.
欲证
即只需证
记
则
当x>1时,F'(x)>0,
∴F(x)在(1,+∞)上是增函数.
∴F(x)>F(1)=0,
∴F(x)>0,即
∴
(3)由题意知
问题转化为
由G'(x)>0,得x>1;由G'(x)<0,得0<x<1.
∴G(x)在区间(1,+∞)上单调递增,在区间(0,1)上单调递减.
又G(1)=-4<0,所以
在(0,+∞)上有2个解.
即C1与f(x)对应曲线C2的交点个数是2.…(14分)
分析:(1)先根据f'(1)=0求出a的值,然后求出g′(x),最后解g′(x)>0与g′(x)<0,即可求出函数g(x)的单调区间;
(2)先判定2-lnx的符号,欲证
(3)由题意知
点评:本题主要考查了利用导数研究函数的极值,以及函数的单调性和图象交点问题,同时考查了转化的思想,属于中档题.
练习册系列答案
相关题目