题目内容

设A(x1,y1),B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线,
(Ⅰ)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;
(Ⅱ)当x1=1,x2=-3时,求直线l的方程.
分析:(Ⅰ)由抛物线y=2x2,得出其焦点.下面分类讨论:(1)直线l的斜率不存在时,(2)直线l的斜率存在时,分别求解当x1+x2取何值时,直线l经过抛物线的焦点F即可;
(Ⅱ)设为l:y=kx+b,则由(Ⅰ)得关于k,b的方程组,解此方程组即可得直线l的方程.
解答:解:(Ⅰ)∵抛物线y=2x2,即x2=
y
2
,∴p=
1
4

∴焦点为F(0,
1
8
)
(1分)
(1)直线l的斜率不存在时,显然有x1+x2=0(3分)
(2)直线l的斜率存在时,设为k,截距为b
即直线l:y=kx+b
由已知得:
y1+y2
2
=k•
x1+x2
2
+b
y1-y2
x1-x2
=-
1
k
(5分)?
2x
2
1
+
2x
2
2
2
=k•
x1+x2
2
+b
2x
2
1
-
2x
2
2
x1-x2
=-
1
k
?
x
2
1
+
x
2
2
=k•
x1+x2
2
+b
x1+x2=-
1
2k
(7分)?
x
2
1
+
x
2
2
=-
1
4
+b≥0
?b≥
1
4

即l的斜率存在时,不可能经过焦点F(0,
1
8
)
(8分)
所以当且仅当x1+x2=0时,直线l经过抛物线的焦点F(9分)
(Ⅱ)当x1=1,x2=-3时,
直线l的斜率显然存在,设为l:y=kx+b(10分)
则由(Ⅰ)得:
x
2
1
+
x
2
2
=k•
x1+x2
2
+b
x1+x2=-
1
2k
?
k•
x1+x2
2
+b=10
-
1
2k
=-2
(11分)?
k=
1
4
b=
41
4
(13分)
所以直线l的方程为y=
1
4
x+
41
4
,即x-4y+41=0(14分)
点评:本小题主要考查直线的一般式方程、直线与圆锥曲线的综合问题等基础知识,考查运算求解能力,考查数形结合思想、转化思想.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网