题目内容
(10分)甲乙两人各有相同的小球10个,在每人的10个小球中都有5个标有数字1,3个标有数字2,2个标有数字3。两人同时分别从自己的小球中任意抽取1个,规定:若抽取的两个小球上的数字相同,则甲获胜,否则乙获胜,求乙获胜的概率。
解:先考虑甲获胜的概率,甲获胜有一下几种情况:
(1)两个小球上的数字均为1,此时,甲获胜的概率为![]()
-----------------------2分
(2)两个小球上的数字均为2,此时,甲获胜的概率为![]()
------------------------4分
(3)两个小球上的数字均为2,此时,甲获胜的概率为
----------------5分
所以:甲获胜的概率![]()
------------7分
故乙获胜的概率为![]()
---------9分
答; 乙获胜的概率为0.62. ---------10分
(本小题满分12分)某大学高等数学老师这学期分别用
两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的
列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
| 甲班 | 乙班 | 合计 | |
| 优秀 | |||
| 不优秀 | |||
| 合计 |
下面临界值表仅供参考:
|
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
|
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
其中
)