题目内容
某种产品的质量以其质量指标值衡量,质量指标值大于或等于98且小于106的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
| 指标值分组 |
|
|
|
|
|
| 频数 | 8 | 20 | 42 | 22 | 8 |
B配方的频数分布表
| 指标值分组 |
|
|
|
|
|
| 频数 | 4 | 12 | 42 | 32 | 10 |
(Ⅰ) 分别估计用A配方,B配方生产的产品的优质品率;
(Ⅱ) 由以上统计数据
填写2
2列联表,问是否有99
的把握认为“A配方与B配方的质量有差异”。
解:
(Ⅰ) 由试验结果知,用A配方生产的产品中优质的平率为
,所以用A配方生产的产品的优质品率的估计值为
。----------------(2分)
由试验结果知,
用B配方生产的产品中优质品的频率为
,所以用B配方生产的产品的优质品率的估计值为
。-------------——-(4分)
(Ⅱ) 2
2列联表:
![]()
(2分)
根据题中的数据计算:
;
由于
,所以没有
的把握认为“A配方与B配方的质量有差异”。(4分)
A配方的频数分布表
| 指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
| 频数 | 8 | 20 | 42 | 22 | 8 |
| 指标值分组 | [90,94) | [94,98) | [98,102) | [102,106) | [106,110] |
| 频数 | 4 | 12 | 42 | 32 | 10 |
(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=
|
从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)
(14分)(理)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:
A配方的频数分布表
|
指标值分组 |
[90,94) |
[94,98) |
[98,102) |
[102,106) |
[106,110] |
|
频数 |
8 |
20 |
42 |
22 |
8 |
B配方的频数分布表
|
指标值分组 |
[90,94) |
[94,98) |
[98,102) |
[102,106) |
[106,110] |
|
频数 |
4 |
12 |
42 |
32 |
10 |
(I)分别估计用A配方,B配方生产的产品的优质品率;
(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为
![]()
从用B配方生产的产品中任取一件,其利润记为X(单位:元).求X的分布列及数学期
望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概
率).