题目内容
已知|
=2,|
|=1,
与
的夹角为60°,求向量
+2
与2
+
的夹角.
| a |
| b |
| a |
| b |
. |
| a |
| b |
| a |
| b |
分析:由数量积的运算求出
•
和(
+2
)•(2
+
)的值,再求出
+2
和2
+
的模,再代入向量夹角的余弦公式化简求值,最后用反三角函数的符号表示出来.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
解答:解:由题意得,
•
=2×1×
=1,
∴(
+2
)•(2
+
)=2
2+5
•
+2
2=15,
|
+2
|=
=2
,
|2
+
|=
=
,
设
+2
与2
+
夹角为θ,
则cosθ=
=
=
,
则θ=arccos
| a |
| b |
| 1 |
| 2 |
∴(
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
|
| a |
| b |
|
| 3 |
|2
| a |
| b |
4
|
| 21 |
设
| a |
| b |
| a |
| b |
则cosθ=
(
| ||||||||
|
|
| 15 | ||||
2
|
5
| ||
| 14 |
则θ=arccos
5
| ||
| 14 |
点评:本题主要考查了向量的数量积运算,向量模的运算,以及向量的夹角的求法,考查了计算能力.
练习册系列答案
相关题目
已知|
|=2,|
|=3,|
-
|=
,则向量
与向量
的夹角是( )
| a |
| b |
| a |
| b |
| 7 |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
D、
|