题目内容

如果椭圆的两焦点为F1(-1,0)和F2(1,0),P是椭圆上的一点,且|PF1|,|F1F2|,|PF2|成等差数列,那么椭圆的方程是
x2
4
+
y2
3
=1
x2
4
+
y2
3
=1
分析:由于|PF1|,|F1F2|,|PF2|成等差数列,及P是椭圆上的一点,可得2|F1F2|=|PF2|+|PF1|=4=2a,即可得到a,又c=1,再利用b2=a2-c2即可.
解答:解:∵|PF1|,|F1F2|,|PF2|成等差数列,P是椭圆上的一点,∴2|F1F2|=|PF2|+|PF1|=4=2a,
解得a=2,又c=1,∴b2=a2-c2=3.
故椭圆的方程为
x2
4
+
y2
3
=1

故答案为
x2
4
+
y2
3
=1
点评:本题考查了椭圆的标准方程及其定义、性质、等差数列的意义,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网