题目内容
设数列{an} 的前n项和为Sn,满足2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)求a1,a2,a3的值;
(2)求证:数列{an+2n}是等比数列
(3)证明:对一切正整数n,有
+
+…+
<
.
(1)求a1,a2,a3的值;
(2)求证:数列{an+2n}是等比数列
(3)证明:对一切正整数n,有
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 3 |
| 2 |
(1)因为a1,a2+5,a3成等差数列,所以a1+a3=2(a2+5),①,
当n=1时,2a1=a2-3,②
当n=2时,2(a1+a2)=a3-7,③
所以联立①②③解得,a1=1,a2=5,a3=19.
(2)由2sn=an+1-2n+1+1,①得2sn-1=an-2n+1(n≥2),②,
两式相减得2an=an+1-an_2n(n≥2),所以
=
=3(n≥2).
因为
=3,所以{an+2n}是首项为3,公比为3的等比数列.所以an+1+2n+1=3(an+2n),又a1=1,a1+21=3,
所以an+2n=3n,即an=3n-2n.
(3)因为an+1=3n+1-2n+1>2×3n-2n+1=2an,所以
<
?
,
所以当n≥2时,
<
?
,
<
?
…
<
?
,两边同时相乘得
<(
)n-2?
,
所以
+
+…+
≤1+
+
×
+…+(
)n-2×
<
<
.
当n=1时,2a1=a2-3,②
当n=2时,2(a1+a2)=a3-7,③
所以联立①②③解得,a1=1,a2=5,a3=19.
(2)由2sn=an+1-2n+1+1,①得2sn-1=an-2n+1(n≥2),②,
两式相减得2an=an+1-an_2n(n≥2),所以
| an+1+2n+1 |
| an+2n |
| 3an+2n+2n+1 |
| an+2n |
因为
| a2+22 |
| a1+2 |
所以an+2n=3n,即an=3n-2n.
(3)因为an+1=3n+1-2n+1>2×3n-2n+1=2an,所以
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
所以当n≥2时,
| 1 |
| a3 |
| 1 |
| 2 |
| 1 |
| a2 |
| 1 |
| a4 |
| 1 |
| 2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| a2 |
所以
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 5 |
| 7 |
| 5 |
| 3 |
| 2 |
练习册系列答案
相关题目