题目内容
(2006•宝山区二模)函数y=sinxsin(x+
)的最大值是
.
| π |
| 3 |
| 3 |
| 4 |
| 3 |
| 4 |
分析:将y=sinxsin(x+
)化简整理为y=
sin(2x-
)+
,从而可求其最大值.
| π |
| 3 |
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 4 |
解答:解:∵y=sinxsin(x+
)=sinx(
sinx+
cosx)=
•
+
sin2x
=
sin2x-
cos2x+
=
sin(2x-
)+
,
∴ymax=
+
=
.
故答案为:
.
| π |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| 1-cos2x |
| 2 |
| ||
| 4 |
=
| ||
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
=
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 4 |
∴ymax=
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
点评:本题考查两角和与差的正弦函数,考查正弦函数的最值,考查化归思想与运算能力,属于中档题.
练习册系列答案
相关题目