题目内容
证明下列三角恒等式:
(1)
=tan2θ;
(2)
=
.
(1)
| 1-cos2θ |
| 1+cos2θ |
(2)
| 1-2sinθcosθ |
| cos2θ-sin2θ |
| 1-tanθ |
| 1+tanθ |
证明:(1)等式的左边=
=
=
=tan2θ=右边,故等式成立.
(2)等式的左边=
=
=
=
=右边,故等式成立.
| 1-cos2θ |
| 1+cos2θ |
| 1-(1-2sin2θ) |
| 1+(2cos2θ-1) |
| 2sin2θ |
| 2cos2θ |
(2)等式的左边=
| 1-2sinθcosθ |
| cos2θ-sin2θ |
| (cosθ-sinθ)2 |
| (cosθ+sinθ)(cosθ-sinθ) |
| cosθ-sinθ |
| cosθ+sinθ |
| 1-tanθ |
| 1+tanθ |
=右边,故等式成立.
练习册系列答案
相关题目