题目内容
已知f(x)=1nx-a(x-l),a∈R
(I)讨论f(x)的单调性;
(Ⅱ)若x≥1时,
石恒成立,求实数a的取值范围,
(I)
在
上单调递增;在
上单调递减.(Ⅱ)![]()
解析试题分析:解:(Ⅰ)
的定义域为
,
.
①当
时,则
,∴
在
上单调递增;
②当
时,令
,得
;令
,得
,
∴
在
上单调递增;在
上单调递减.
(Ⅱ)由题意,
时,
恒成立.
设
,则
对
时恒成立.
则
①当
时,
,即
在
上单调递减,
∴当
时,
与
恒成立矛盾.
②当
时,对于方程
(*),
(ⅰ)
,即
时,
,即
在
上单调递增,
∴
符合题意.
(ⅱ)
,即
时,方程(*)有两个不等实根
,不妨设
,则
,
当
时,
,即
递减,∴
与
恒成立矛盾.
综上,实数
的取值范围为
.
另解:
时,
恒成立,
当
时,上式显然成立;当
时,
恒成立.
设
,可证
在
上单调递减(需证明),
又由洛必达法则知,
,∴
.
故,
.
考点:导数的应用
点评:导数常应用于求曲线的切线方程、求函数的最值与单调区间、证明不等式和解不等式中参数的取值范围等。
练习册系列答案
相关题目