题目内容
已知直线与曲线只有一个交点,则实数 .
或
解析
(08年大连市一模理)(12分) 已知曲线
(I)若直线与曲线C只有一个公共点,求实数m的取值范围;
(II)若直线与曲线C恒有两个不同的交点A和B,且(其中O为原点),求实数k的取值范围。
(08年潍坊市质检理) (12分)已知实数m>1,定点A(-m,0),B(m,0),S为一动点,点S与A,B两点连线斜率之积为
(1)求动点S的轨迹C的方程,并指出它是哪一种曲线;
(2)当时,问t取何值时,直线与曲线C有且只有一个交点?
(3)在(2)的条件下,证明:直线l上横坐标小于2的点P到点(1,0)的距离与到直线x=2的距离之比的最小值等于曲线C的离心率.
(08年东城区统一练习一理)(13分)
解析:已知定圆圆心为A,动圆M过点B(1,0)且和圆A相切,动圆的圆心M的轨迹记为C.
(I)求曲线C的方程;
(II)若点为曲线C上一点,求证:直线与曲线C有且只有一个交点.
已知定圆,动圆过点且与圆相切,记动圆圆心的轨迹为.(Ⅰ)求曲线的方程;(Ⅱ)若点为曲线上任意一点,证明直线与曲线恒有且只有一个公共点.(Ⅲ)由(Ⅱ)你能否得到一个更一般的结论?并且对双曲线写出一个类似的结论(皆不必证明).