题目内容
(选修4-5:不等式选讲)
设正数满足,求的最小值.
已知椭圆的中心在原点,焦点在轴上,它的一个顶点恰好经过抛物线的准线,且经过点.
(1)求椭圆的方程;
(2)若直线的方程为.是经过椭圆左焦点的任一弦,设直线与直线相交于点,记的斜率分别为.试探索之间有怎样的关系式?给出证明过程.
已知集合,,则
A. B. C. D.
如果关于x的方程有两个实数解,那么实数a的值是 .
如图,该程序运行后输出的结果为 .
(本小题满分16分)
已知数列是等差数列,是等比数列,且满足,.
(1)若,.
①当时,求数列和的通项公式;
②若数列是唯一的,求的值;
(2)若,,均为正整数,且成等比数列,求数列的公差的最大值.
如图,梯形中,,,,若,则 .
(本小题满分12分)在中,已知,.
(1)求与的值;
(2)若角,,的对边分别为,,,且,求,的值.
(本小题满分12分)某班名学生在一次百米测试中,成绩全部介于秒与秒之间,将测试结果按如下方式分成五组:第一组,第二组, ,第五组,下图是按上述分组方法得到的频率分布直方图.
(1)根据频率分布直方图,估计这名学生百米测试成绩的平均值;
(2)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于的概率.