题目内容
.在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又2是a3与a5的等比中项.设bn=5-log2an.(1)求数列{bn}的通项公式;
(2)已知数列{bn}的前n项和为Sn,
【答案】分析:(1)根据等比数列的性质解出a3=4,a5=1,可得首项与公比,可得通项公式
,从而
得到 bn 和
.
(2)
,用裂项法求得
的值.
解答:解:(1)∵a1a5+2a3a5+a2a8=25,∴a32+2a3a5+a52=25,又an>0,∴a3+a5=5,
又2为a3与a5的等比中项,∴a3a5=4.
而q∈(0,1),∴a3>a5,∴a3=4,a5=1,∴
,
∴通项公式
,bn=5-log2an=5-(5-n)=n,∴
.
(2)
,
∴
=
.
点评:本题考查等比数列的定义和性质,等比数列的通项公式,等比数列的前n项和公式,用裂项法对数列求和,求出
,是解题的关键.
得到 bn 和
(2)
解答:解:(1)∵a1a5+2a3a5+a2a8=25,∴a32+2a3a5+a52=25,又an>0,∴a3+a5=5,
又2为a3与a5的等比中项,∴a3a5=4.
而q∈(0,1),∴a3>a5,∴a3=4,a5=1,∴
∴通项公式
(2)
∴
点评:本题考查等比数列的定义和性质,等比数列的通项公式,等比数列的前n项和公式,用裂项法对数列求和,求出
练习册系列答案
相关题目
在等比数列{an}中,an>0,a1+a2=1,a3+a4=9,则a4+a5=( )
| A、16 | B、27 | C、36 | D、81 |