题目内容
已知n是正整数,数列{an}的前n项和为Sn,且满足Sn=-an+
(n-3),数列(nan)的前n项和为Tn.
(1)求数列{an}的通项公式;
(2)求Tn;
(3)设An=2Tn,Bn=(2n+4)Sn+3,试比较An与Bn的大小.
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)求Tn;
(3)设An=2Tn,Bn=(2n+4)Sn+3,试比较An与Bn的大小.
(1)当n=1时,由已知可得,S1=a1=-a1+
(1-3)
解得a1=-
…2分
当n≥2时,an=Sn-Sn-1=-an+
(n-3)-[-an-1+
(n-4)]
解得 an=
an-1+
,即an-
═
(an-1-
)
因此,数列{an-
}是首项为-1,公比为
的等比数列
∴an-
=-(
)n-1
∴an=
-
(II)∵nan=
-
∴Tn=(1+2+3+…+n)-(1+2×
+3×
+…+n×
)…6分
令Un=1+2×
+3×
+…+n×
则
Un=
+2×
+3×
+…+n×
.
上面两式相减:
Un=1+
+
+…+
-n×
=
-n•
,
即Un=4-
∴Tn=
-4+
=
+
(III)∵Sn=-an+
=-
+
+
=
+
∴An-Bn=
+
-
-
-3
=
∵当n=2或n=3时,
的值最大,最大值为0,
∴An-Bn≤0.
∴An≤Bn.
| 1 |
| 2 |
解得a1=-
| 1 |
| 2 |
当n≥2时,an=Sn-Sn-1=-an+
| 1 |
| 2 |
| 1 |
| 2 |
解得 an=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
因此,数列{an-
| 1 |
| 2 |
| 1 |
| 2 |
∴an-
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 1 |
| 2 |
| 1 |
| 2n-1 |
(II)∵nan=
| n |
| 2 |
| n |
| 2n-1 |
∴Tn=(1+2+3+…+n)-(1+2×
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
令Un=1+2×
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
则
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
上面两式相减:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
=
1-
| ||
1-
|
| 1 |
| 2n |
即Un=4-
| n+2 |
| 2n-1 |
∴Tn=
| n(n+1) |
| 4 |
| n+2 |
| 2n-1 |
| n2+n-16 |
| 4 |
| n+2 |
| 2n-1 |
(III)∵Sn=-an+
| n-3 |
| 2 |
=-
| 1 |
| 2 |
| 1 |
| 2n-1 |
| n-3 |
| 2 |
=
| n-4 |
| 2 |
| 1 |
| 2n-1 |
∴An-Bn=
| n2+n-16 |
| 2 |
| n+2 |
| 2n-2 |
| (2n+4)(n-4) |
| 2 |
| n+2 |
| 2n-2 |
=
| -n2+5n-6 |
| 2 |
∵当n=2或n=3时,
| -n2+5n-6 |
| 2 |
∴An-Bn≤0.
∴An≤Bn.
练习册系列答案
相关题目