题目内容
已知Sn是数列{an}的前n项和,且Sn=n2(n∈N*).
(1)求{an}的通项公式;
(2)令bn=
,Tn是数列{bn}的前n项和,试证明Tn<
.
(1)求{an}的通项公式;
(2)令bn=
| 1 |
| anan=1 |
| 1 |
| 2 |
(1)当n=1时,S1=12=1,
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
又n=1时,a1=2-1=1,满足通项公式,
∴此数列为等差数列,其通项公式为an=2n-1,
(2)证明:bn=
=
(
-
)
∴Tn=b1+b2+b3+…+bn=
(1-
+
-
+…+
-
)=
(1-
)<
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1,
又n=1时,a1=2-1=1,满足通项公式,
∴此数列为等差数列,其通项公式为an=2n-1,
(2)证明:bn=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=b1+b2+b3+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
练习册系列答案
相关题目