题目内容

如图,已知三棱柱ABC—A1B1C1的底面是边长为2的正三角形,侧棱A1A与ABAC均成45°角,且A1E⊥B1B于E,A1FCC1F.

(1)求证:平面A1EF⊥平面B1BCC1

(2)求直线AA1到平面B1BCC1的距离;

(3)当AA1多长时,点A1到平面ABC与平面B1BCC1的距离相等?

解:(1)证明:CC1BB1,又BB1⊥A1E,∴CC1A1E.而CC1A1F

CC1⊥平面A1EF,∴平面A1EF⊥平面B1BCC1.

(2)作A1HEFH,则A1H⊥面B1BCC1,∴A1HA1到面B1BCC1的距离.在△A1EF中,A1EA1F=2,EF=2,∴△A1EF为等腰直角三角形且EF为斜边,∴A1H为斜边上中线,可得A1HEF=1.

(3)作A1G⊥面ABCG,连结AG,则A1G就是A1到面ABC的距离,且AG是∠BAC的角平分线,A1G=1.

∵cos∠A1AG.∴sin∠A1AG.∴A1A

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网