题目内容
| CG |
分析:根据向量的加法、减法法则,用向量
,
,
来表示向量
,再求|
|2的值即可解.
| C1A1 |
| C1B1 |
| C1C |
| CG |
| CG |
解答:解:∵
=
-
=
×
×(
-
)-
═
×(
+
+
+
)-
=
(
+
-
)
∴
2=|
|2=
×(|
|2+|
|2+|
|2+2×|
|×|
|×COS
)=
×(4+4+4+2×2×2×
)
=
.
∴|
|=
.
故选A.
| CG |
| 2 |
| 3 |
| C1D |
| C1C |
| 2 |
| 3 |
| 1 |
| 2 |
| C1A |
| C1B |
| C1C |
| 1 |
| 3 |
| C1A1 |
| A1A |
| C1B1 |
| B1B |
| C1C |
=
| 1 |
| 3 |
| C1A1 |
| C1B1 |
| C1C |
∴
| CG |
| CG |
| 1 |
| 9 |
| C1A1 |
| C1B1 |
| C1C |
| C1A1 |
| C1B1 |
| π |
| 3 |
| 1 |
| 9 |
| 1 |
| 2 |
=
| 16 |
| 9 |
∴|
| CG |
| 4 |
| 3 |
故选A.
点评:本题借助考查直线与平面的垂直,考查向量加、减混合运算及其几何意义.
练习册系列答案
相关题目