题目内容
已知向量
=(1,0),
=(x,1),当x>0时,定义函数f(x)=
.
(1)求函数y=f(x)的反函数y=f-1(x);
(2)数列{an}满足:a1=a>0,an+1=f(an),n∈N*,Sn为数列{an}的前n项和,
①证明:Sn<2a;
②当a=1时,证明:an>
.
| a |
| b |
| ||||
|
|
(1)求函数y=f(x)的反函数y=f-1(x);
(2)数列{an}满足:a1=a>0,an+1=f(an),n∈N*,Sn为数列{an}的前n项和,
①证明:Sn<2a;
②当a=1时,证明:an>
| 1 |
| 2n |
分析:由题意得f(x)=
(x>0),令x=tanα(α∈(0,
)),则f(x)=
=
=tan
,由于α∈(0,
)⇒
∈(0,
),所以tan
∈(0,1),即函数f(x)的值域为(0,1)
(1)由y=
,反解x可得x=
,所以原函数的反函数y=f-1(x)=
(0<x<1)
(2)因为a1=a>0,an+1=f(an),n∈N*,所以an+1=
①利用放缩法.an+1=
<
,所以Sn=a1+a2+…+an<a+
a+
a+…+
a=a+a(
)=a+a(1-
)<2a
②因为an+1=f(an),所以an=f-1(an+1),所以an=
,又由原函数的值域知an+1∈(0,1),所以an=
<
,则
>
-
⇒
<
+1,进而(
+1)<2(
+1),所以
+1<(
+1)•2n-1=2n于是可得结论.
| x | ||
1+
|
| π |
| 2 |
| tanα | ||
1+
|
| sinα |
| 1+cosα |
| α |
| 2 |
| π |
| 2 |
| α |
| 2 |
| π |
| 4 |
| α |
| 2 |
(1)由y=
| x | ||
1+
|
| 2y |
| 1-y2 |
| 2x |
| 1-x2 |
(2)因为a1=a>0,an+1=f(an),n∈N*,所以an+1=
| an | ||||
1+
|
①利用放缩法.an+1=
| an | ||||
1+
|
| an |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| ||||
1-
|
| 1 |
| 2n-1 |
②因为an+1=f(an),所以an=f-1(an+1),所以an=
| 2an+1 | ||
1-
|
| 2an+1 | ||
1-
|
| 2an+1 |
| 1-an+1 |
| 1 |
| an |
| 1 |
| 2an+1 |
| 1 |
| 2 |
| 1 |
| an+1 |
| 2 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
解答:解:由题意得f(x)=
(x>0)
令x=tanα(α∈(0,
)),则f(x)=
=
=tan
由于α∈(0,
)⇒
∈(0,
),所以tan
∈(0,1),即函数f(x)的值域为(0,1)
(1)由y=
⇒y-x=y
⇒y2-2xy+x2=y2+y2x2
于是解得x=
,所以原函数的反函数y=f-1(x)=
(0<x<1)
(2)证明:因为a1=a>0,an+1=f(an),n∈N*,所以an+1=
∴an+1=
<
,所以Sn=a1+a2+…+an<a+
a+
a+…+
a=a+a(
)=a+a(1-
)<2a
②因为an+1=f(an),所以an=f-1(an+1)
所以an=
,又由原函数的值域知an+1∈(0,1)
所以an=
<
,则
>
-
⇒
<
+1
进而(
+1)<2(
+1),所以
+1<(
+1)•2n-1=2n
于是an>
>
| x | ||
1+
|
令x=tanα(α∈(0,
| π |
| 2 |
| tanα | ||
1+
|
| sinα |
| 1+cosα |
| α |
| 2 |
由于α∈(0,
| π |
| 2 |
| α |
| 2 |
| π |
| 4 |
| α |
| 2 |
(1)由y=
| x | ||
1+
|
| 1+x2 |
于是解得x=
| 2y |
| 1-y2 |
| 2x |
| 1-x2 |
(2)证明:因为a1=a>0,an+1=f(an),n∈N*,所以an+1=
| an | ||||
1+
|
∴an+1=
| an | ||||
1+
|
| an |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| ||||
1-
|
| 1 |
| 2n-1 |
②因为an+1=f(an),所以an=f-1(an+1)
所以an=
| 2an+1 | ||
1-
|
所以an=
| 2an+1 | ||
1-
|
| 2an+1 |
| 1-an+1 |
| 1 |
| an |
| 1 |
| 2an+1 |
| 1 |
| 2 |
| 1 |
| an+1 |
| 2 |
| an |
进而(
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
于是an>
| 1 |
| 2n-1 |
| 1 |
| 2n |
点评:本题以新定义为载体,考查函数及反函数的求解,考查不等式的证明,解题的关键是适当放缩,难度较大.
练习册系列答案
相关题目