题目内容
【题目】已知圆
,某抛物线的顶点为原点
,焦点为圆心
,经过点
的直线
交圆
于
,
两点,交此抛物线于
,
两点,其中
,
在第一象限,
,
在第二象限.
(1)求该抛物线的方程;
(2)是否存在直线
,使
是
与
的等差中项?若存在,求直线
的方程;若不存在,请说明理由.
【答案】(1)抛物线的方程为
(2)存在满足要求的直线
,其方程为
或![]()
【解析】试题分析:(1)圆方程可化为可化为
圆心
的坐标为
,
抛物线的方程为
;(2)由等差数列性质可得
![]()
,再由
,
,
存在满足要求的直线
,其方程为
或
.
试题解析:
(1)
可化为
,
根据已知抛物线的方程为
(
).
∵圆心
的坐标为
,∴
,解得
.
∴抛物线的方程为
.
(2)∵
是
与
的等差中项,圆
的半径为2,∴
.
∴
.
由题知,直线
的斜率存在,故可设直线
的方程为
,
设
,
,
由
,得
,
,
故
,
.
∵![]()
∴![]()
由
,解得
.
∴存在满足要求的直线
,其方程为
或![]()
练习册系列答案
相关题目
【题目】某市的教育主管部门对所管辖的学校进行年终督导评估,为了解某学校师生对学校教学管理的满意度,分别从教师和不同年级的同学中随机抽取若干师生,进行评分(满分100分),绘制如下频率分布直方图(分组区间为
,
,
,
,
,
),并将分数从低到高分为四个等级:
满意度评分 |
|
|
|
|
满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
已知满意度等级为基本满意的有340人.
![]()
(1)求表中
的值及不满意的人数;
(2)在等级为不满意的师生中,老师占
,现从该等级师生中按分层抽样抽取12人了解不满意的原因,并从中抽取3人担任整改督导员,记
为老师整改督导员的人数,求
的分布列及数学期望.