题目内容
数列{an}满足a1=1,a2=
,且
+
=
(n≥2),则an=______.
| 2 |
| 3 |
| 1 |
| an+1 |
| 1 |
| an-1 |
| 2 |
| an |
因为数列{an}满足a1=1,a2=
,且
+
=
(n≥2),
所以数列{
}是以
=1为首项,以
-
=
为公差的等差数列,
所以
=1+(n-1)×
=
,
所以an=
.
故答案为
.
| 2 |
| 3 |
| 1 |
| an+1 |
| 1 |
| an-1 |
| 2 |
| an |
所以数列{
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| 2 |
所以
| 1 |
| an |
| 1 |
| 2 |
| n+1 |
| 2 |
所以an=
| 2 |
| n+1 |
故答案为
| 2 |
| n+1 |
练习册系列答案
相关题目