题目内容
已知M为抛物线y2=4x上一动点,F为抛物线的焦点,定点P(3,1),则|MP|+|MF|的最小值为( )
分析:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|进而把问题转化为求|MP|+|MD|取得最小,进而可推断出当D,M,P三点共线时|MP|+|MD|最小,答案可得.
解答:解:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|
∴要求|MP|+|MF|取得最小值,即求|MP|+|MD|取得最小,
当D,M,P三点共线时|MP|+|MD|最小,为3-(-1)=4.
故选B.
∴要求|MP|+|MF|取得最小值,即求|MP|+|MD|取得最小,
当D,M,P三点共线时|MP|+|MD|最小,为3-(-1)=4.
故选B.
点评:本题考查椭圆的定义、标准方程,以及简单性质的应用,判断当D,M,P三点共线时|PM|+|MD|最小,是解题的关键.
练习册系列答案
相关题目
已知M是抛物线y2=2px(p>0)上的点,若M到此抛物线的准线和对称轴的距离分别为5和4,则点M的横坐标为( )
| A、1 | B、1或4 | C、1或5 | D、4或5 |