题目内容

已知函数f(x)=x+bcosx,其中b为常数.那么“b=0”是“f(x)为奇函数”的(  )
分析:由“b=0”,可得f(x)=x,即“f(x)为奇函数”成立.由“f(x)为奇函数”,可得f(-x)=-f(x),即“b=0”成立.综合可得结论.
解答:解:∵已知函数f(x)=x+bcosx,其中b为常数,由“b=0”,可得f(x)=x,即“f(x)为奇函数”成立,故成分性成立.
由“f(x)为奇函数”,可得f(-x)=-f(x),即-x+bcosx=-(x+bcosx),∴b=0,即“b=0”成立,故必要性也成立.
综上可得,“b=0”是“f(x)为奇函数”的充分必要条件,
故选C.
点评:本题主要考查充分条件、必要条件、充要条件的定义,函数的奇偶性的定义,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网