题目内容
已知:0<α<| π |
| 2 |
| π |
| 4 |
| 1 |
| 3 |
| 4 |
| 5 |
(1)求sin2β的值;
(2)求cos(α+
| π |
| 4 |
分析:(1)法一:直接利用两角差的余弦函数展开,再用方程两边平方,求sin2β的值;
法二:利用sin2β=cos(
-2β),二倍角公式,直接求出sin2β的值;
(2)通过题意求出sin(β-
)=
,cos(α+β)=-
,根据cos(α+
)=cos[(α+β)-(β-
)],展开代入数据,即可求cos(α+
)的值.
法二:利用sin2β=cos(
| π |
| 2 |
(2)通过题意求出sin(β-
| π |
| 4 |
2
| ||
| 3 |
| 3 |
| 5 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
解答:解:(1)法一:∵cos(β-
)=cos
cosβ+sin
sinβ
=
cosβ+
sinβ=
.
∴cosβ+sinβ=
.
∴1+sin2β=
,∴sin2β=-
.
法二:sin2β=cos(
-2β)
=2cos2(β-
)-1=-
.
(2)∵0<α<
<β<π,∴
<β-
<
,
<α+β<
.
∴sin(β-
)>0,cos(α+β)<0.
∵cos(β-
)=
,sin(α+β)=
,
∴sin(β-
)=
,cos(α+β)=-
.
∴cos(α+
)=cos[(α+β)-(β-
)]
=cos(α+β)cos(β-
)+sin(α+β)sin(β-
)
=-
×
+
×
=
.
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
| ||
| 2 |
| ||
| 2 |
| 1 |
| 3 |
∴cosβ+sinβ=
| ||
| 3 |
∴1+sin2β=
| 2 |
| 9 |
| 7 |
| 9 |
法二:sin2β=cos(
| π |
| 2 |
=2cos2(β-
| π |
| 4 |
| 7 |
| 9 |
(2)∵0<α<
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
| π |
| 2 |
| 3π |
| 2 |
∴sin(β-
| π |
| 4 |
∵cos(β-
| π |
| 4 |
| 1 |
| 3 |
| 4 |
| 5 |
∴sin(β-
| π |
| 4 |
2
| ||
| 3 |
| 3 |
| 5 |
∴cos(α+
| π |
| 4 |
| π |
| 4 |
=cos(α+β)cos(β-
| π |
| 4 |
| π |
| 4 |
=-
| 3 |
| 5 |
| 1 |
| 3 |
| 4 |
| 5 |
2
| ||
| 3 |
8
| ||
| 15 |
点评:本题是基础题,考查三角函数的化简与求值,角的变换技巧在三角函数化简求值中应用比较普遍,不仅体现一个人的解题能力,同时体现数学素养的高低,可以说是智慧与能力的展现题目.
练习册系列答案
相关题目