题目内容
P是抛物线y2=4x上一点,P到y轴的距离为d1,到直线l:x+2y-12=0的距离为d2,则(d1+d2)min=___________.
解析:设P(x,y),则d1+d2=x+
=
+
|
+2y-12|
=
-
(
+2y-12)
=
(
y2-2y+12)
=
[
(y-
)2+12-
].
∴(d1+d2)min=
[12-
]
=
[12-(5+1)]=
-1.
答案:
-1
练习册系列答案
相关题目
题目内容
P是抛物线y2=4x上一点,P到y轴的距离为d1,到直线l:x+2y-12=0的距离为d2,则(d1+d2)min=___________.
解析:设P(x,y),则d1+d2=x+
=
+
|
+2y-12|
=
-
(
+2y-12)
=
(
y2-2y+12)
=
[
(y-
)2+12-
].
∴(d1+d2)min=
[12-
]
=
[12-(5+1)]=
-1.
答案:
-1