题目内容
(03年上海卷)(12分)
已知平行六面体ABCD―A1B1C1D1中,A1A⊥平面ABCD,AB=4,AD=2.若B1D⊥BC,直线B1D与平面ABCD所成的角等于30°,求平行六面体ABCD―A1B1C1D1的体积.
(03年上海卷)(14分)
如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.
(1)若最大拱高h为6米,则隧道设计的拱
宽l是多少?
(2)若最大拱高h不小于6米,则应如何设
计拱高h和拱宽l,才能使半个椭圆形隧
道的土方工程量最最小?
(半个椭圆的面积公式为,柱体体积为:底面积乘以高.本题结果精确到0.1米)
(03年上海卷理)(14分)
已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T f(x)成立.
(1)函数f(x)= x 是否属于集合M?说明理由;
(2)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:
f(x)=ax∈M;
(3)若函数f(x)=sinkx∈M ,求实数k的取值范围.
(03年上海卷)若首项为a1,公比为q的等比数列的前n项和总小于这个数列的各项和,则首项a1,公比q的一组取值可以是(a1,q)= .