题目内容

已知函数f(x)在[0,+∞)上是减函数,g(x)=-f(|x|),若g(lgx)<g(1),则x的取值范围是(  )
分析:据题意知g(x)=-f(|x|)为偶函数且在为(0,+∞)单调递增,结合条件g(lgx)<g(1),由偶函数的性质可得|lgx|<1,解不等式可求.
解答:解:根据题意知g(x)=-f(|x|)为偶函数,且在(0,+∞)上单调递增,
又因为g(lgx)<g(1),
所以|lgx|<1,
∴-1<lgx<1,
解得
1
10
<x<0.
故选A.
点评:本题主要考查了偶函数单调性性质的应用,熟记一些常用的结论可以简化基本运算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网