题目内容

已知函数,f(x)=alnx-ax-3(a∈R).
(1 )当a=1时,求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,问:m在什么范围取值时,对于任意的t[1,2],函数g(x)=x3+x2[
m
2
+f′(x)]
在区间(t,3)丨上总存在极值?
(Ⅰ) f′(x)=
a(1-x)
x
(x>0)

当a=1时,f′(x)=
1-x
x
,(x>0)

令导数大于0,可解得0<x<1,令导数小于0,可解得x<0(舍)或x>1
故函数的单调增区间为(0,1),单调减区间是(1,+∞)
(Ⅱ) f′(2)=-
a
2
=1
得a=-2,f(x)=-2lnx+2x-3
g(x)=x3+(
m
2
+2)x2-2x

∴g'(x)=3x2+(m+4)x-2
∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=-2
g′(t)<0
g′(3)>0

由题意知:对于任意的t∈[1,2],g′(t)<0恒成立,
所以有:
g′(1)<0
g′(2)<0
g′(3)>0

-
37
3
<m<-9
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网