题目内容
【题目】已知等差数列
的前
项中,奇数项的和为56,偶数项的和为48,且
(其中
).
(1)求数列
的通项公式;
(2)若
,
,…,
,…是一个等比数列,其中
,
,求数列
的通项公式;
(3)若存在实数
,
,使得
对任意
恒成立,求
的最小值.
【答案】(1)
;(2)
;(3)
.
【解析】分析:(1)先根据已知条件求得m=7,再利用已知求出
,
,再写出数列
的通项公式.(2)先求出
,再结合
.(3)先求出
的单调性,再求
的最小值.
详解:(1)由题意,
,
,
因为
,所以
,解得
.
所以
,因为
,且
,所以
.
设数列
公差为
,则
,所以
.
所以
,通项公式
.
(2)由题意,
,
,
设这个等比数列公比为
,则
.那么
,
另一方面
,所以
.
(3)记
,则
.
因为
,所以当
时,
,即
,
又
,所以当
时,
的最大值为
,所以
.
又
,当
时,
,
所以,当
时,
的最小值
,所以
.
综上,
的最小值为
.
练习册系列答案
相关题目
【题目】某险种的基本保费为
(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
上年度出险次数 | 0 | 1 | 2 | 3 | 4 |
|
保费 |
|
|
|
|
|
|
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数 | 0 | 1 | 2 | 3 | 4 |
|
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出
的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.