题目内容
函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,
有f(x1● x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明;
(3)如果f(4)=1,f(3x+1)+f(2x﹣6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
有f(x1● x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明;
(3)如果f(4)=1,f(3x+1)+f(2x﹣6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
(1)解:令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.
(2)证明:令x1=x2=﹣1,有f[(﹣1)×(﹣1)]=f(﹣1)+f(﹣1).解得f(﹣1)=0.
令x1=﹣1,x2=x,有f(﹣x)=f(﹣1)+f(x),
∴f(﹣x)=f(x).
∴f(x)为偶函数.
(3)解:f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3.
∴f(3x+1)+f(2x﹣6)≤3即f[(3x+1)(2x﹣6)]≤f(64).(*)
∵f(x)在(0,+∞)上是增函数,
∴(*)等价于不等式组
或
或
或
∴3<x≤5或﹣
≤x<﹣
或﹣
<x<3.
∴x的取值范围为{x|﹣
≤x<﹣
或﹣
<x<3或3<x≤5}.
(2)证明:令x1=x2=﹣1,有f[(﹣1)×(﹣1)]=f(﹣1)+f(﹣1).解得f(﹣1)=0.
令x1=﹣1,x2=x,有f(﹣x)=f(﹣1)+f(x),
∴f(﹣x)=f(x).
∴f(x)为偶函数.
(3)解:f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3.
∴f(3x+1)+f(2x﹣6)≤3即f[(3x+1)(2x﹣6)]≤f(64).(*)
∵f(x)在(0,+∞)上是增函数,
∴(*)等价于不等式组
或
∴3<x≤5或﹣
∴x的取值范围为{x|﹣
练习册系列答案
相关题目
若函数f(x)的定义域为[-1,2],则函数
的定义域为( )
| f(x+2) |
| x |
| A、[-1,0)∪(0,2] |
| B、[-3,0) |
| C、[1,4] |
| D、(0,2] |