题目内容
已知数列{an}中,a1=
,点(n,2an+1-an)在直线y=x上,其中n=1,2,3,….
(1)令bn=an+1-an-1,求证数列{bn}是等比数列;
(2)求数列{an}的通项.
| 1 |
| 2 |
(1)令bn=an+1-an-1,求证数列{bn}是等比数列;
(2)求数列{an}的通项.
(1)证明:a1=
,2an+1=an+n,
∵a2=
,a2-a1-1=
-
-1=-
,
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴
=
=
=
=
.
bn=-
×(
)n-1=-
×
,
∴{bn}是以-
为首项,以
为公比的等比数列.
(2)∵an+1-an-1=-
×
,
∴a2-a1-1=-
×
,
a3-a2-1=-
×
,
∴an-an-1-1=-
×
,
将以上各式相加得:
∴an-a1-(n-1)=-
(
+
++
),
∴an=a1+n-1-
×
=
+(n-1)-
(1-
)=
+n-2.
∴an=
+n-2.
| 1 |
| 2 |
∵a2=
| 3 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴
| bn+1 |
| bn |
| an+2-an+1-1 |
| an+1-an-1 |
=
| ||||
| an+1-an-1 |
| ||
| an+1-an-1 |
| 1 |
| 2 |
bn=-
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2n |
∴{bn}是以-
| 3 |
| 4 |
| 1 |
| 2 |
(2)∵an+1-an-1=-
| 3 |
| 2 |
| 1 |
| 2n |
∴a2-a1-1=-
| 3 |
| 2 |
| 1 |
| 2 |
a3-a2-1=-
| 3 |
| 2 |
| 1 |
| 22 |
∴an-an-1-1=-
| 3 |
| 2 |
| 1 |
| 2n^-1 |
将以上各式相加得:
∴an-a1-(n-1)=-
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n^-1 |
∴an=a1+n-1-
| 3 |
| 2 |
| ||||
1-
|
=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 3 |
| 2n |
∴an=
| 3 |
| 2n |
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|