题目内容
在中,角、、的所对边分别为、、,若,则角的
值为( )
A.或 B.或 C. D.
如果执行右边的程序框图,输入正整数和实数,输出A,B, 则( )
A. A+B为的和
B. 为的算术平均数
C. A和B分别是中最大的数和最小的数
D. A和B分别是中最小的数和最大的数
已知函数,则 .
在直角坐标系中,椭圆 的离心率,且过点,椭圆的长轴的两端点为,点为椭圆上异于的动点,定直线与直线、分别交于两点.
(1)求椭圆的方程;
(2)在轴上是否存在定点经过以为直径的圆,若存在,求定点坐标;若不存在,说明理由.
设函数,若为奇函数,则的值为 .
计算的结果等于( )
A. B. C. D.
(本小题满分12分)如图,在平面直角坐标系中, 已知分别是椭圆的左、右焦点分别是椭圆的左、右顶点,为线段的中点, 且.
(2)若为椭圆上的动点(异于点),连接并延长交椭圆于点,连接、并分别延
长交椭圆于点连接,设直线、的斜率存在且分别为、,试问是否存在常数,使
得恒成立?若存在,求出的值;若不存在,说明理由.
以下四个命题中:
①在回归分析中, 可用相关指数的值判断的拟合效果,越大,模型的拟合效果越好;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近;
③若数据的方差为,则的方差为;
④对分类变量与的随机变量的观测值来说, 越小,判断“与有关系”的把握程度越大.
其中真命题的个数为( )
球的球面上有四点,其中四点共面,是边长为2的正三角形,面面,则棱锥的体积的最大值为( )
A. B. C. D.4