题目内容

6.设?x?表示不小于实数x的最小整数,如?2.6?=3,?-3.5?=-3.已知函数f(x)=?x?2-2?x?,若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则k的取值范围是(  )
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$[{-1,-\frac{2}{3}})∪[5,10)$C.$({-\frac{4}{3},-1}]∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

分析 根据[x]的定义,分别作出函数y=f(x)和y=k(x-2)-2的图象,利用数形结合即可得到结论.

解答 解:令F(x)=0得f(x)=k(x-2)-2,
作出函数y=f(x)和y=k(x-2)-2的图象如下图所示:

若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,
则函数f(x)和g(x)=k(x-2)-2的图象在(-1,4]上有2个交点,
经计算可得kPA=5,kPB=10,kPO=-1,kPC=-$\frac{2}{3}$,
∴k的范围是[-1,-$\frac{2}{3}$)∪[5,10).
故选:B.

点评 本题考查了对新定义的理解,函数零点的个数与函数图象的关系,数形结合解题思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网