题目内容
数列{an}满足a1=2,an-an-1=
,则an=
-(
)n
-(
)n.
| 1 |
| 2n |
| 5 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
分析:利用“累加求和”和等比数列的前n项和公式即可得出.
解答:解:∵数列{an}满足a1=2,an-an-1=
,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=
+
+…+
+2
=
+
=
-(
)n;
故答案为
-(
)n.
| 1 |
| 2n |
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=
| 1 |
| 2n |
| 1 |
| 2n-1 |
| 1 |
| 22 |
=
| ||||
1-
|
| 3 |
| 2 |
=
| 5 |
| 2 |
| 1 |
| 2 |
故答案为
| 5 |
| 2 |
| 1 |
| 2 |
点评:本题考查了“累加求和”和等比数列的前n项和公式,属于中档题.
练习册系列答案
相关题目