题目内容

(2013•浙江)直线y=2x+3被圆x2+y2-6x-8y=0所截得的弦长等于
4
5
4
5
分析:求出圆的圆心与半径,利用圆心距,半径,半弦长满足勾股定理,求解弦长即可.
解答:解:圆x2+y2-6x-8y=0的圆心坐标(3,4),半径为5,
圆心到直线的距离为:
|2×3-4+3|
22+1
=
5

因为圆心距,半径,半弦长满足勾股定理,
所以直线y=2x+3被圆x2+y2-6x-8y=0所截得的弦长为:2×
52-(
5
)2
=4
5

故答案为:4
5
点评:本题考查直线与圆的位置关系,弦长的求法,考查转化思想与计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网