题目内容
(1-x)2n-1展开式中,二项式系数最大的项是
- A.第n-1项
- B.第n项
- C.第n-1项与第n+1项
- D.第n项与第n+1项
D
分析:由于指数是奇数,故展开式的项数为偶数,由二项式的性质知,中间两项系数最大,求出其序号即可
解答:由题意(1-x)2n-1展开式中,二项式系数最大的项是中间两项,分别为第n项与第n+1项
故选D.
点评:本题考查二项定理,解题的关键是掌握二项式展开式的性质,以及二项式的指数的奇偶性,由此判断出哪些项的二项式系数最大,本题是概念型题.
分析:由于指数是奇数,故展开式的项数为偶数,由二项式的性质知,中间两项系数最大,求出其序号即可
解答:由题意(1-x)2n-1展开式中,二项式系数最大的项是中间两项,分别为第n项与第n+1项
故选D.
点评:本题考查二项定理,解题的关键是掌握二项式展开式的性质,以及二项式的指数的奇偶性,由此判断出哪些项的二项式系数最大,本题是概念型题.
练习册系列答案
相关题目