题目内容
设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在区间[1,2]上是增函数,求实数k的取值范围.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在区间[1,2]上是增函数,求实数k的取值范围.
(1)f(0)=1?c=1,f(1)=4?a+b+c=4
(2)F(x)=log2(g(x)-f(x))=log2(-x2+(k-2)x)
由F(x)在区间[1,2]上是增函数得h(x)=-x2+(k-2)x在[1,2]上为增函数且恒正
故
?k≥6,
实数k的取值范围k≥6.
|
(2)F(x)=log2(g(x)-f(x))=log2(-x2+(k-2)x)
由F(x)在区间[1,2]上是增函数得h(x)=-x2+(k-2)x在[1,2]上为增函数且恒正
故
|
实数k的取值范围k≥6.
练习册系列答案
相关题目
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2<
,且函数f(x)的图象关于直线x=x0对称,则有( )
| 1 |
| a |
A、x0≤
| ||
B、x0>
| ||
C、x0<
| ||
D、x0≥
|