题目内容

在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.

(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;

(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.

【解析】(Ⅰ)连结AF,因为EF∥AB,FG∥BC,

EF∩FG=F,所以平面EFG∥平面ABCD,又易证,

所以,即,即,又M为AD

的中点,所以,又因为FG∥BC∥AD,所以FG∥AM,所以四边形AMGF是平行四边形,故GM∥FA,又因为GM平面ABFE,FA平面ABFE,所以GM∥平面ABFE.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网