题目内容
【题目】已知函数
(
).
(1)讨论函数
极值点的个数,并说明理由;
(2)若
,
恒成立,求
的最大整数值.
【答案】(1)当
时,
在
上没有极值点;当
时,
在
上有一个极值点.
(2)3.
【解析】试题分析:
(1)首先对函数求导,然后分类讨论可得当
时,
在
上没有极值点;当
时,
在
上有一个极值点.
(2)结合题中所给的条件构造新函数
(
),结合函数的性质可得实数
的最大整数值为3.
试题解析:
(1)
的定义域为
,且
.
当
时,
在
上恒成立,函数
在
上单调递减.
∴
在
上没有极值点;
当
时,令
得
;
列表
![]()
所以当
时,
取得极小值.
综上,当
时,
在
上没有极值点;
当
时,
在
上有一个极值点.
(2)对
,
恒成立等价于
对
恒成立,
设函数
(
),则
(
),
令函数
,则
(
),
当
时,
,所以
在
上是增函数,
又
,
,
所以存在
,使得
,即
,
且当
时,
,即
,故
在
在上单调递减;
当
时,
,即
,故
在
上单调递增;
所以当
时,
有最小值
,
由
得
,即
,
所以
,
所以
,又
,所以实数
的最大整数值为3.
练习册系列答案
相关题目