题目内容
解:∵原抛物线方程为y2=x,∴2p=.
∴,抛物线顶点坐标为(0,0),焦点坐标为(,0),准线方程为x=-.
设b0,椭圆方程为=1,抛物线方程为x2=8(y-b).如图所示,过点F(0,b+2)作x轴的平行线,与抛物线在第一象限的交点为G.已知抛物线在点G的切线经过椭圆的右焦点F1.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设A1B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).