题目内容
已知函数和的图象的对称轴完全相同,若,则的取值范围是( )
A. B. C. D.
位同学每人从甲、乙、丙门课程中选修2门,则恰有2人选修课程甲的不同选法共有( ) A. 种 B.种 C.种 D. 种
求的流程图程序如图所示,其中①应为 ( )
A. B.
C. D.
已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为_______
设点P是双曲线与圆x2+y2=a2+b2在第一象限的交点,F1、F2分别是双曲线的左、右焦点,且|PF1|=3|PF2|,则双曲线的离心率为( )
(本小题满分10分)选修4-4:坐标系与参数方程选讲.
在直角坐标系中,曲线的参数方程为(为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数).
(1)若曲线与曲线只有一个公共点,求的取值范围;
(2)当时,求曲线上的点与曲线上点的最小距离.
若对于定义在R上的函数 ,其图象是连续不断的,且存在常数使得对任意实数都成立,则称 是一个“—伴随函数”.有下列关于 “—伴随函数”的结论:
①是常数函数中唯一个“—伴随函数”;
②不是“—伴随函数”;
③是一个“—伴随函数”;
④“—伴随函数”至少有一个零点.
其中不正确的序号是_________(填上所有不正确的结论序号).
(本小题共14分)已知椭圆:,右焦点,点在椭圆上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线与椭圆有且只有一个公共点,且与圆相交于两点,问是否成立?请说明理由.
(本小题满分13分)某学校实验室有浓度为和的两种溶液.在使用之前需要重新配制溶液,具体操作方法为取浓度为和的两种溶液各分别装入两个容积都为的锥形瓶中,先从瓶中取出溶液放入瓶中,充分混合后,再从瓶中取出溶液放入瓶中,再充分混合.以上两次混合过程完成后算完成一次操作.设在完成第次操作后,瓶中溶液浓度为,瓶中溶液浓度为.
(1)请计算,并判定数列是否为等比数列?若是,求出其通项公式;若不是,请说明理由;
(2)若要使得两个瓶中的溶液浓度之差小于,则至少要经过几次?