题目内容
已知三角形的三条边成公差为2的等差数列,且它的最大角的正弦值为
,则这个三角形的面积为______.
| ||
| 2 |
由题意可设三边为a-2,a,a+2(a>0)
则a+2为最大边,根据三角形的大边对大角可知其对的角为最大角
∵最大角的正弦值为
,则最大角为120°
由余弦定理可得,cos120°=
=-
整理可得,a2-5a=0
∵a>0
解可得a=5,即三角形的三边为3,5,7
代入三角形的面积公式可得S=
×3×5sin120°=
故答案为:
则a+2为最大边,根据三角形的大边对大角可知其对的角为最大角
∵最大角的正弦值为
| ||
| 2 |
由余弦定理可得,cos120°=
| (a-2)2+a2-(a+2)2 |
| 2a(a-2) |
| 1 |
| 2 |
整理可得,a2-5a=0
∵a>0
解可得a=5,即三角形的三边为3,5,7
代入三角形的面积公式可得S=
| 1 |
| 2 |
15
| ||
| 4 |
故答案为:
15
| ||
| 4 |
练习册系列答案
相关题目