题目内容
(2010•宿松县三模)在△ABC中,G是△ABC的重心,且a
+b
+
c
=
,其中a,b,c分别是∠A,∠B,∠C的对边,则∠A=( )
| GA |
| GB |
| ||
| 3 |
| GC |
| 0 |
分析:根据重心性质可知:
+
+
=
,由a
+b
+
c
=
,知(a-
c)
+(b-
c)
=
.因为
与
不共线,所以,a=b=
c,由余弦定理可得:cosA=
=
,由此能求出∠A.
| GA |
| GB |
| GC |
| 0 |
| GA |
| GB |
| ||
| 3 |
| GC |
| 0 |
| ||
| 3 |
| GA |
| ||
| 3 |
| GB |
| 0 |
| GA |
| GB |
| ||
| 3 |
| b2+c2-a2 |
| 2bc |
| ||
| 2 |
解答:解:根据重心性质可知:
+
+
=
,
∵a
+b
+
c
=
,
∴a
+b
+
c(-
-
)=
.
∴(a-
c)
+(b-
c)
=
.
因为
与
不共线,
所以,a=b=
c
由余弦定理可得:cosA=
=
=
,
∴A=30°.
故选A.
| GA |
| GB |
| GC |
| 0 |
∵a
| GA |
| GB |
| ||
| 3 |
| GC |
| 0 |
∴a
| GA |
| GB |
| ||
| 3 |
| GA |
| GB |
| 0 |
∴(a-
| ||
| 3 |
| GA |
| ||
| 3 |
| GB |
| 0 |
因为
| GA |
| GB |
所以,a=b=
| ||
| 3 |
由余弦定理可得:cosA=
| b2+c2-a2 |
| 2bc |
| ||||||||||
2×
|
| ||
| 2 |
∴A=30°.
故选A.
点评:本题考查重心的性质和应用,是基础题.解题时要认真审题,注意余弦定理的灵活运用.
练习册系列答案
相关题目