题目内容
已知f(x)是定义在R上的函数,f(1)=10,且对于任意x∈R都有f(x+20)≥f(x)+20,f(x+1)≤f(x)+1,若g(x)=f(x)+1-x,则g(10)=
20
10
1
0
已知f(x)是定义在R上的函数,f(1)=10,且对于任意x∈R都有f(x+20)≥f(x)+20,f(x+1)≤f(x)+1,若g(x)=f(x)+1-x,则g(10)=________.
设h(x)=,x∈[,5],其中m是不等于零的常数,
(1)写出h(4x)的定义域;
(2)求h(x)的单调递增区间;
(3)已知函数f(x)(x∈[a,b]),定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],则f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],当m=1时,设,不等式t≤M1(x)-M2(x)≤n恒成立,求t,n的取值范围;
已知f(x)对一切实数x,y都有f(x+y)=f(x)+f(y),f(1)=2,当x>0时,f(x)<0.
(1)证明f(x)为奇函数;
(2)用定义证明f(x)为R上的减函数;
(3)解不等式f(x-1)-f(1-2x-x2)<4