题目内容

双曲线E的渐近线方程为y=±
4
3
x
,且经过点(2
3
4
3
3
)

(1)求双曲线E的方程;
(2)F1,F2为双曲线E的两个焦点,P为双曲线上一点,若|PF1|•|PF2|=32,求∠F1PF2的大小.
分析:(1)设双曲线方程为
x2
9
-
y2
16
(λ≠0),代入点(2
3
4
3
3
)
,可得λ的值,从而可求双曲线E的方程;
(2)利用双曲线的定义,结合余弦定理,即可求∠F1PF2的大小.
解答:解:(1)设双曲线方程为
x2
9
-
y2
16
(λ≠0),
代入点(2
3
4
3
3
)
,可得
12
9
-
3
9

∴λ=1,
∴双曲线E的方程为
x2
9
-
y2
16
=1

(2)由
x2
9
-
y2
16
=1
得c2=25,
∴4c2=100
设|PF1|=d1,|PF2|=d2,则|d1-d2|=6…①
由已知条件:d1•d2=32…②
由①、②得,d12+d22=100
在△F1PF2中,由余弦定理得,cos∠F1PF2=
d12+d22-4c2
2d1d2
=0
∴∠F1PF2=90°
点评:解决焦点三角形问题一般要用到两种知识,一是曲线定义,本题中由双曲线定义可得焦半径之差,已知有焦半径之积,故可求出焦半径或其关系;二是余弦定理,利用解三角形知识求角或面积.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网