题目内容
设an=A.25
B.50
C.75
D.100
【答案】分析:由于f(n)=sin
的周期T=50,由正弦函数性质可知,a1,a2,…,a24>0,a26,a27,…,a49<0,f(n)=
单调递减,a25=0,a26…a50都为负数,但是|a25|<a1,|a26|<a2,…,|a49|<a24,从而可判断
解答:解:由于f(n)=sin
的周期T=50
由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0
且sin
,sin
…但是f(n)=
单调递减
a26…a50都为负数,但是|a25|<a1,|a26|<a2,…,|a49|<a24
∴S1,S2,…,S25中都为正,而s26,s27,…,s50都为正
同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,
故选D
点评:本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.
解答:解:由于f(n)=sin
由正弦函数性质可知,a1,a2,…,a24>0,a25=0,a26,a27,…,a49<0,a50=0
且sin
a26…a50都为负数,但是|a25|<a1,|a26|<a2,…,|a49|<a24
∴S1,S2,…,S25中都为正,而s26,s27,…,s50都为正
同理S1,S2,…,s75都为正,S1,S2,…,s75,…,s100都为正,
故选D
点评:本题主要考查了三角函数的周期的应用,数列求和的应用,解题的关键是正弦函数性质的灵活应用.
练习册系列答案
相关题目