题目内容
11.将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC成60°的两面角,在折起后形成的三棱锥D-ABC中,给出下列三个命题:①AC⊥BD;
②△DBC是等边三角形;
③三棱锥D-ABC的体积是$\frac{\sqrt{6}}{24}$.
其中正确命题的序号是( )
| A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
分析 通过证明AC⊥平面BOD,证明AC⊥BD,可得①正确;
过D作DO⊥AC于O,连接BO,利用勾股定理求得BD长,可得②正确;
利用棱锥的体积公式计算三棱锥的体积,可得③错误;
解答 解:过D作DO⊥AC于O,连接BO,由题意知:DO=BO=$\frac{\sqrt{2}}{2}$,![]()
∵平面ADC⊥平面ABC,∴DO⊥平面ABC,∴DO⊥BO,∴BD=1,即△BCD为等边三角形,②正确;
∵O为AC的中点,AB=BC,∴BO⊥AC,∴AC⊥平面BOD,BD?平面BOD,∴AC⊥BD,①正确;
∵VD-ABC=$\frac{1}{3}$×$\frac{1}{2}$×1×1×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{12}$,∴③错误;
故选A.
点评 本题考查了面面垂直的性质及异面直线所成角的求法,考查了学生的空间想象能力与计算能力.
练习册系列答案
相关题目
2.已知α、β、γ是三个不同的平面,α∥β,β∥γ,则α与γ的位置关系是( )
| A. | α∥γ | B. | α⊥γ | ||
| C. | α、γ与β的距离相等 | D. | α与γ有一个公共点 |
3.已知两条不同直线m,n,三个不同平面α,β,γ,下列命题中正确的是( )
| A. | 若m∥α,n∥α,m∥n | B. | 若m∥α,m∥β,α∥β | C. | 若α⊥γ,β⊥γ,α∥β | D. | 若m⊥α,n?α,m⊥n |
20.设α,β是两个不同的平面,l是一条直线,以下命题正确的是( )
| A. | 若l⊥α,α⊥β,则l?β | B. | 若l∥α,α∥β,则l?β | C. | 若l∥α,α⊥β,则l⊥β | D. | 若l⊥α,α∥β,则l⊥β |